TABLE 2.1 Elastic Moduli

Δ Shear modulus, or rigidity. This is a measure of a material's resistance to shear.

$$\sigma_{ij} = 2\mu\varepsilon_{ij} \Rightarrow \mu = \frac{\sigma_{ij}}{2\varepsilon_{ij}}$$

Note that μ is nonnegative and has units of stress. Typical values are 2×10^{11} dyn/cm² or 200 kbar.

Bulk modulus or incompressibility. k is the material resistance to a change in volume when subject to a load, and it is defined by the ratio of an applied hydrostatic pressure to the induced fractional change in volume:

$$\sigma_{ij} = -P\delta_{ij}, \quad \frac{\Delta V}{V} = \frac{-P}{k} \Rightarrow -P = k\varepsilon_{ii} \Rightarrow \frac{-P}{\varepsilon_{ii}} = \lambda + \frac{2}{3}\mu = k$$

k must be nonnegative, and as a material becomes more rigid, k increases.

- λ Lamé's second constant. λ has no simple physical meaning, but it greatly simplifies Hooke's law.
- E Young's modulus. E is a measure of the ratio of uniaxial stress to strain in the same direction.

$$\sigma_{11} = E\left(\frac{\Delta L}{L}\right) = E\varepsilon_{11}; \text{ by Hooke's Law, } E = \frac{\mu(3\lambda + 2\mu)}{(\lambda + \mu)}$$

Poisson's ratio. ν is the ratio of radial to axial strain when a uniaxial stress is applied ($\sigma_{11} \neq 0$, $\sigma_{22} = \sigma_{33} = 0$).

$$\varepsilon_{22} = \varepsilon_{33}, \qquad \nu = \frac{-\varepsilon_{22}}{\varepsilon_{11}} = \frac{\lambda}{2(\lambda + \mu)}$$

Poisson's ratio is dimensionless and has a maximum value of 0.5. This is true for a fluid, when $\mu = 0$ (no shear resistance). The smallest value is 0—infinite shear resistance. Most Earth materials have a Poisson ratio between 0.22 and 0.35.

TABLE 2.2 Relationships between Elastic Moduli

μ	k	λ :	E	ν
$3(k-\lambda)$	$\lambda + \frac{2\mu}{3}$	$k-\frac{2\mu}{3}$	9kμ	λ
2	$x + {3}$	$K - \frac{1}{3}$	$3k + \mu$	$2(\lambda + \mu)$
$\lambda \left(\frac{1-2\nu}{2\nu}\right)$	$\mu \left[\frac{2(1+\nu)}{3(1-2\nu)} \right]$	$2\mu\nu$	$2\mu(1+\nu)$	λ
(2ν)	$\mu \left[3(1-2\nu) \right]$	$\overline{(1-2\nu)}$		$\overline{(3k-\lambda)}$
$3k\left(\frac{1-2\nu}{2+2\nu}\right)$	$\lambda\left(\frac{1+\nu}{3\nu}\right)$	$3k\left(\frac{\nu}{1+\nu}\right)$	$\mu\left(\frac{3\lambda+2\mu}{\lambda+\mu}\right)$	$3k-2\mu$
$(2+2\nu)$				$2(3k+\mu)$
E	E	$E\nu$	$3k(1-2\nu)$	3k - E
$2(1 + \nu)$	$3(1-2\nu)$	$(1+\nu)(1-2\nu)$		6 <i>k</i>